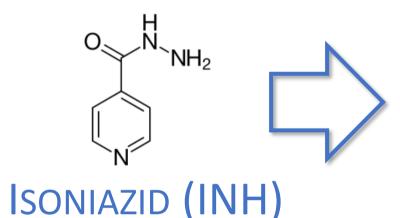


The Disease: Tuberculosis

Fighting multi-drug resistant tuberculosis: paving the way with different approaches AUTHORS: R. F. de Almeida | J. Marquês, C. Faria, S. Santos, M. S. Santos, Filomena Martins **R&D UNIT: CQE-Ciências** Evaluating the Therapeutic Potential Cell Viability Assays and Fluorescence Spectroscopy Experimental approaches Evaluating toxicological effects 8 E+07 Hep G2 Cells Ability to bind Human Serum Albumin 1 E+08 Immortal human liver cancer cell line Increasing concentrarion Ability to interact with cellular barriers – membranes 6 E+07 8 E+07 Mtt Assay Toxicological effects on human cell lines n. 6 E+07 ₩ 4 E+07 assay for assessing cell metabolic activity ≝ 4 E+07 Human Serum Albumin (HSA) The barriers to be crossed 2 E+07 **RESULT COMPILATION** 2 E+07 Makes the 0 E+00 **Cell Viability** 0 E+00 Compound K_{d} (M) K'_{d} (M) transport of 0.0E+00 IC₅₀ (μΜ) 310 335 360 385 410 compounds through λ/nm 2.72×10⁻³ 5.38×10⁻³ > 200 INH the blood stream Dissociation Constant 2.30×10⁻³ 3.50×10⁻³ INH-C₂ n.a. 4.59×10⁻⁵ 2.16×10⁻⁴ >25 INH-C₁₀ How strong is the **Determination of:** 1.66×10⁻⁴ 1.35×10⁻⁴ N33 • Dissociation constants (K_d) Compound-HSA biding >25 • Binding site 1.26×10⁻⁴ 2.30×10⁻⁴ >200 N34 Use of site markers Caseum Infected macrophag (extracellular (intracellular 1. tuberculosis) M. tuberculosis) 5.07×10⁻³ N33red 1.23×10⁻³ >200 Interaction of INH derivatives with 1.50×10⁻⁴ 48.5 4.69×10⁻⁴ N34red systems mimicking: enetration of bacterial cell Monolayer compressibility curves $K'_{d} - K_{d}$ in the presence of warfarin


The causative agent: Mycobacterium tuberculosis

1.5 million deaths in 2018

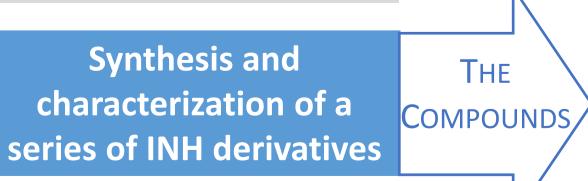
(Global TB facts, WHO Global Tuberculosis Report 2019 (refers to 2018 situation)

Pharmacological therapeutic approaches

One of the first-line and most effective drugs to treat tuberculosis

Mutations in the multifunctional catalase-peroxidase enzyme $KatG \Rightarrow Resistance$ to Isoniazid

3.5 % of new cases and 18 % of previously treated



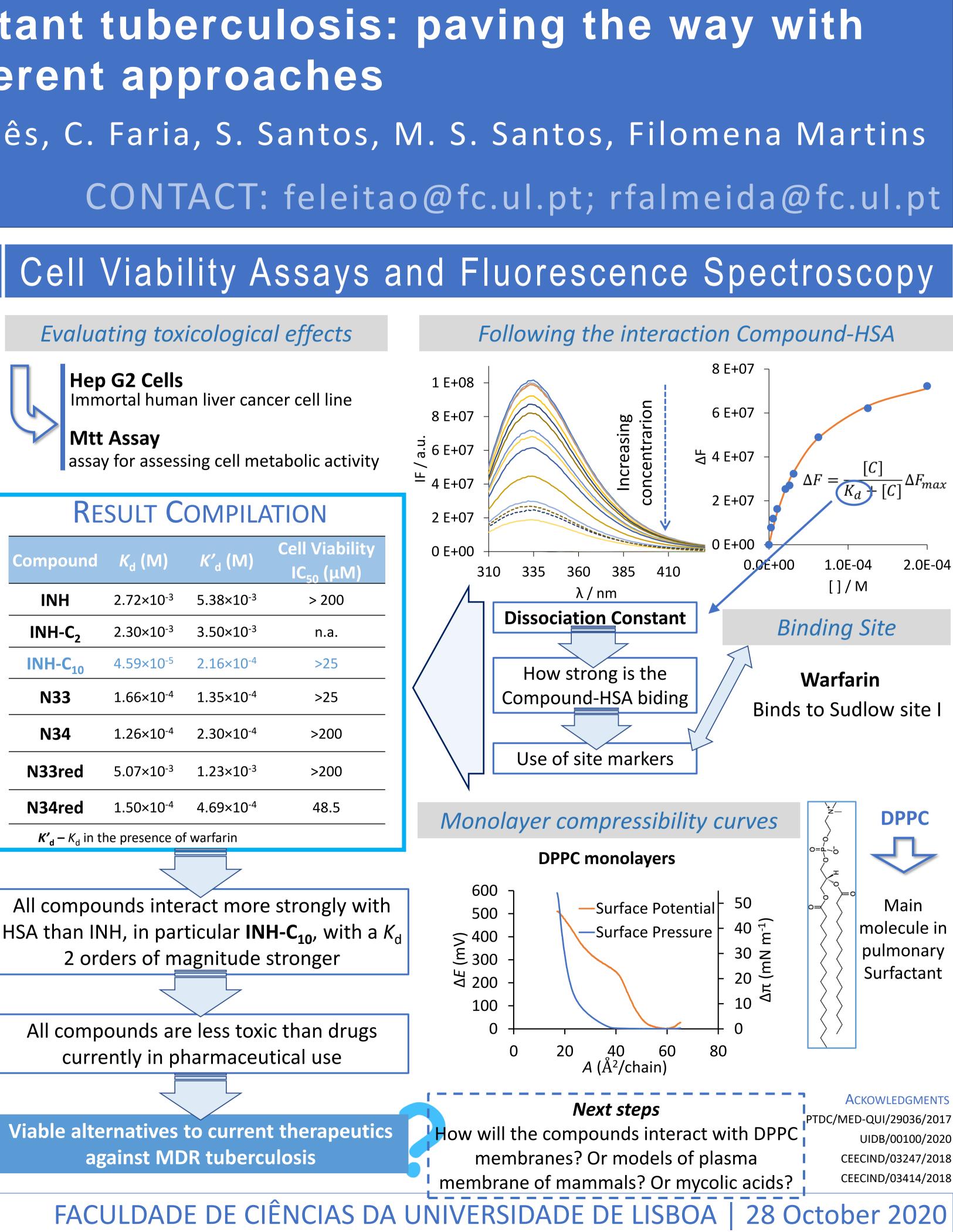
Multidrug-resistant (MDR) (isoniazid and rifampicin resistance) or rifampicin-resistant tuberculosis 🧲

The development of new effective and low toxicity antitubercular compounds is urgent

TARGTUB PTDC/MED-QUI/29036/2017

Previous promising results:

N'-decanoylisonicotinoylhydrazide (INH-C₁₀) 6x more potent than isoniazid against the KatG mutated strain, S315T


- plasma membrane of mammals - cell wall of Mycobacterium tuberculosis

ID	Name	Structure
INH-C ₂	N'-acetylisonicotinoylhydrazide	
INH-C ₁₀	N'-decanoylisonicotinoylhydrazide	
N33	(E)-methyl 4-((2-isonicotinoylhydrazono)methyl)benzoate	
N34	(E)-N'-(4-phenoxybenzylidene)isonicotinohydrazide	
N33red	methyl 4-((2-isonicotinoylhydrazinyl)methyl)benzoate	
N34red	N'-(4-phenoxybenzyl) isonicotino hydrazide	

V. Dartois. Nature

reviews 2014, 12, 159 Molecular target
